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Modified weighted density-functional approach to the crystal-melt interface
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We present a modified weighted density-functional approach to study the structure and energetics of the
crystal-melt interface of hard sphere fluid. Compared to the earlier theories of the solid-liquid interface,
computational requirements have been considerably reduced through the newly defined layer-by-layer
weighted density. Interfacial width obtained from the present approach is slightly larger than that obtained
from earlier weighted density based theories using density parametrization, but is close to the result from
similar theories with free minimization as well as the computer simulation result of soft-sphef poten-
tial, which resembles hard sphere potential. Surface free energy predicted by the present theory is somewhat
lower than that obtained from earlier weighted density based approaches with density parametrization but is
again close to that of free minimization with respect to the density distribution at the interface.
[S1063-651%98)05302-1
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I. INTRODUCTION approximatior{17] for this density functional. The unknown
part of the functional is, however, universal for a system of
The study of the interface between a crystal and its melt igprescribed interparticle interaction and is independent of the
of immense importance for the understanding of crystakxternal potential responsible for the inhomogeneity of the
growth, homogeneous nucleation, and many other importardensity distribution. For some systems, the exact functional
phenomen#l]. Experimental studies of the solid-fluid inter- form of this quantity for uniform density is known and this
face are, however, rather difficult since the interface is conknowledge can be used to obtain approximations for the
fined between two condensed bulk phases. As a result, confunctionals for the corresponding nonuniform density distri-
puter simulation has played the role of a very important andution. The simplest among these approximate procedures is
useful technique for the study of solid-fluid interfaces overthe perturbative approa¢i1,17,18, which involves a func-
the years and many simulation studies on the interface havional Taylor series expansion of thexcessfree energy
been reported in the literatuf@—5]. The simulation studies around the homogeneous bulk density in powers of the den-
of (i) Lennard-Jones fc11), (100, and(110) interfaces by  sity deviation. This expansion, however, involves all the
Broughton and Gilmef3], (i) the soft-spherer('*? fcc  higher-order correlation functions of the fluid and since the
(100 interface by Cape and Woodcopk] and(iii) ther ~'2  correlation functions beyond the two-particle direct correla-
fcc (111 interface by Tallor[5] are some of the works that tion function(DCF) are not known in general, a truncation in
are of particular relevance in the present context. Since theecond order is often necessary to implement this procedure
early simulation[6,7] work for hard spheres in 1968, there in practical problems. To bypass the problem of truncation
has been an upsurge of interest in the theoretical approachassociated with the perturbative approach, nonperturbative
for the study of solid-fluid transition process. An accurateapproache§19—-21] that do not involve truncation but incor-
and easy to handle microscopic theory for the freezing aporate the two-particle DCF exactly and all the higher order
well as crystal-melt interface has, however, still not beercorrelation functions in an approximate manner have been
fully developed. Recently, density-functional theof] developed. These nonperturbative procedures have been
(DFT), a computationally simple and versatile approach apwidely used for fluids involving short rangesuch as hard
plicable to many-electron guantum systef® as well as spherginteractiond19—21 as well as ionic systenid4,15
many-particle classical systeft0,11] has provided a rather with long range Coulomb interaction. In this approach, the
easy means to describe the fluid-solid transifibh] not only  free energy functional of the actual inhomogeneous system is
for simple fluids but also for complex fluid42] as well as  obtained by evaluating the corresponding homogeneous fluid
guantum system§13]. A wide variety of other problems, expression using an effective density. Curtin and Ashcroft
involving the equilibrium structure and thermodynamics of[20] define the effective density as the weighted average of
nonuniform as well as uniform fluidgl0,14,13 can be in- the actual density distribution of the inhomogeneous system
vestigated by DFT with great ease and a sophisticated leveind this is known as weighted density approximation
of accuracy. (WDA), which, however, requires the determination of a
In DFT, the grand potential of a many-particle system isspatially varying weighted densigy(r) and hence is a com-
treated as a functional of its single-particle denitg] and  putationally demanding approach. For this reason, its appli-
this functional assumes a minimum value for the true den€ation to more complex systems has been somewhat re-
sity. The exact functional form of the grand potential is, stricted although it is highly successful in predicting the
however, not known in general for an inhomogeneous densolid-fluid coexistence for hard sphere systems. To overcome
sity distribution, and therefore it is essential to find a suitablethis difficulty, a much simplified approach, known as the

1063-651X/98/5{2)/19397)/$15.00 57 1939 © 1998 The American Physical Society



1940 NIHARENDU CHOUDHURY AND SWAPAN K. GHOSH 57

modified weighted density approa@dWDA) has been pro- we review different nonperturbative weighted density based
posed by Denton and Ashcrdf1]. This approach involves approaches along with our proposed approach. In Sec. lll,
the determination of a spatially invariant weighted densitythe density parametrization and the application of our ap-
and therefore significantly reduces the computational reproach to the hard sphere system are presented. Finally re-
quirements in contrast to WDA. For the hard sphere bulksults are discussed in Sec. IV along with a short concluding
fluid-solid transition, predictions of both WDA and MWDA remark in Sec. V.
agree quite well with the simulation results.

Though there are several procedures to study the bulk Il. DENSITY-FUNCTIONAL THEORY
solid-fluid transition, very few approaches to study the solid-

melt interface have been reported so far. As in the case of In DFT, the grand p(r)]tentla(ll[p] (()jfabmany-partlclel inho- ial
bulk solid-fluid transition, both perturbative and nonpertur-Mogeneous system characterized by an external potentia

bative approaches have been used to investigate the soIiH(r) is treated as a unique functional of the density distribu-

melt interface. Earlier works on the solid-melt interface arellon 2(r) and is expressed as

largely based on the perturbative approach of Haymet and

Oxtoby(HO) [18], which involves a functional Taylor series Q[p]= F[p]+f dr[u(r)— w]p(r), 1)
expansion truncated in second order in the density deviation

and an additional square-gradient approximation for the

variation of p(r) through the interface. In this approach, a Where s is the chemical potential anB[p], the intrinsic
very broad interface has been predicted by Haymet and O)Helmholtz free energy functional, is a universal functional of
toby [18] that may be a consequence of using the truncateglensity consisting of ardeal-gascontribution ¢;y) and an
expression and the square-gradient approximation. These digxcessree energy contributionHg,), viz.,

ficulties of the perturbative approach have inspired the de-

velopment of alternative nonperturbative approximations to Flp]=FidpltFelpl. 2

the excessfree energy functionaF.[p(r)] and a suitable

parametrization of the density distribution bypassing theThe ideal-gas free energy functiond;{ p]), which repre-
square-gradient approximation. Curfia2] was the first to  sents the free energy of the nonuniform system in the ab-
extend their WDA approach for bulk solid-fluid transitions to sence of internal interactions, can be explicitly expressed by
the crystal-melt interface by a suitable flexible parametrizathe exact functional form

tion of the density, predicting the structure and energetics in

fairly close agreement with the simulation results. Though 1 3

this approach overcomes all the drawbacks associated with Fidp]=8 f dr p(r){In[p(r)A~]—1}, ©)

the HO approach, its computational requirements are very

demanding as it involves the calculation of the weighted denwhereﬁ[= (kgT) 1] (kg is the Boltzmann constantepre-

sity p(r) as a function ofr. Encouraged by the success of sents the inverse temperature, andlenotes the thermal de
MWDA in reducing the computational effort in the case of Broglie wavelength. On the other hand, the excess free en-
bulk fluid-solid transition, Marr and Ga$23] have intro-  ergy contribution F.,) arises due to interparticle interactions
duced recently a planar weighted density approximatiomand the exact form of this functional is not known in general
(PWDA) that involves the calculation of a one-dimensionalfor an innomogeneous density distribution. Various approxi-
weighted densityp(z) in contrast to the calculation of a mate schemegerturbative as well as nonperturbativeve
three-dimensional weighted densip(r) in Curtin’s ap-  therefore been proposed for the calculationFoff p] and
proach. This approach yields results quite similar to that ofnost of them make use of the knowledge of this functional
Curtin’s WDA approacti22]. In both of these nonperturba- o its derivative for specific systems of uniform density. The
tive approaches, the calculation of the weight function in-relevant nonperturbative approaches based on an effective

volves numerical solution of a nonlinear differential equa-weighted density prescription are discussed in the next sub-
tion. To overcome this difficulty and to further simplify the section.

computational requirements we propose in this paper a lay-
erwise MWDA approach, where the weighted density is con-
stant within a layer, but changes from layer to layer i.e.,
every layer is associated with a constant weighted density. In Curtin and Ashcrof{20] have approximated the average
this approach, thexcesdree energy of each of the layers is (per particl¢ excess free energy of the inhomogeneous sys-
obtained by evaluating the homogeneous free energy expretem locally by the excess free energy per particle of the
sion with the weighted density of that layer and the totalcorresponding homogeneous fluighy) evaluated at some
excesdree energy of the interface is obtained as the sum oéffective liquid densityp(r) and the total excess free energy
the free energies of all the layers. Thus, this approach inis then expressed as a sum of the local contributions, viz.,
volves the evaluation of only a few weighted density quan-

tities in contrast to the PWDA, which requires the weighted WDA[ q_ —

density values to be evaluated at each mesh point irzthe Fex [p]—J dr p(r)ole(1), “@
direction. We have applied the proposed layerwise MWDA o

based technique to calculate the density profile and the suwhere the effective weighted densityr) is a suitably cho-
face free energy of the crystal-melt interface of the hardsen average of the actual inhomogeneous density distribu-
sphere fluid. This paper is organized as follows. In Sec. lltion, defined as

A. Weighted density approximation
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density distribution p(r). On the other hand, although
MWDA requires the evaluation of only one effective density
guantity, and has been quite successful for the bulk solid, use
The weight functionw(|r—r’[) is normalized to unity to of a single density parameter is unlikely to reproduce the
ensure the correct result at the uniform density limit and isinterfacial properties properly. In an attempt to reduce the
uniquely determined by demanding that the approximated¢omputational requirement associated with WDA, Marr and
Fed p] yields the correct two-particle direct correlation func- Gast{23] proposed a planar weighted density approximation,
tion in the homogeneous lim{bulk densityp,), viz., where they retained WDA only in the perpendicutadirec-
tion and employed MWDA in the-y plane parallel to the
interface. Thus, they defined a spatially varying one-
dimensional weighted densitp(z) as

Hr)=J dr’ p(r )w(lr=r'[;p(r)). ©)

S*Felp]

B 1@y _y¢'|- = im —
B 1CO (|r r |1p0)_ lim 5p(r)6p(r’)

pP—po

(6)

Using these two conditionsy is solved for readily in Fourier

—__[fdx dyp(r)fdr’ p(r")w(r—r'[;p(2))
p(z)=

space and one obtains Jfdx dyp(r) (1)
—Bflcgz)(k;po)zZz/x(’)w(k;po) and proposed to obtain threxcesdree energy as
J b2
"‘Pog['ﬁow (k;po) ], (7) i o
0 PR 1= [ o 32 v(pl2) 12
where the primes denote derivatives with respect to the den-
sity. Clearly, evaluation ofw(k;pg) in this approach in- where the planar-averaged densitfz) is defined as
volves the solution of a nonlinear second order differential
equation for each value df.
. 1
p(2)=% f f dx dyp(r) (13

B. Modified weighted density approximation

The MWDA of Denton and Ashcroff21] has simplified
and reduced the computational procedure drastically by a
proximating the globakxcesdree energy per particle of the

inhomogeneous system by the same for the homogeneous

with A denoting the interfacial area. Here alaois deter-
mined from the condition of normalization and the require-

ment on the limiting behavidiEq. (6)]. In Fourier spacev is
obtained as the solution of the differential equation

fluid evaluated at a spatially invariant effective density and

expressing=., as

FIPAL p]1=Nso(p), (8)

whereN is the number of particles and the weighted density

p is defined as

1 _
P:Nfdr p(r)fdr’ p(rw([r=r'[;p). (9

Demanding normalization and the condition defined by Eq.

(6), w in Fourier space is obtained as

w(k; ):—i[ “Lei? (K po) + Sk opotpl.  (10)
Po 20 B¢y (Kipo)+ diopothol-

The evaluation ofv(k; pg) is thus much easier here as com-

pared to the WDA procedure, since the expression is simpl

and explicit and no differential equation is to be solved.

C. Planar weighted density approximation

Curtin [22] has successfully applied WDA to the interfa-

— B (k; po) = 2¢5w(K; po)
J
+ 8,000 EPS [pow?(K;po)]. (14)

In contrast to WDA, PWDA has reduced the computational
requirements significantly as this procedure involves calcu-
lation of a one-dimensional weighted density instead of a
three-dimensional one.

D. Layerwise modified weighted density approximation

Motivated by the success of the PWDA, we propose a
method leading to its further simplification. In this approach,
we follow PWDA and employ MWDA in the-y plane but
instead of using WDA in the direction, we employ suitable
coarse graining in the direction. Thus we divide the region
of inhomogeneous interface into different atomic layers and
instead of only a single weighted density parameter as in the
full MWDA, we have one density parameter for each layer
and hence a total ofi density parameters where is the
number of atomic layers in the interface region. This is con-
siderable simplification as compared to PWDA, which in-
volvesp(z) and hence density parameters equal to the num-
ber of mesh points in the direction. After evaluating a

cial problem but with a significant computational effort as it spatially invariant weighted density for each layer, #xeess
involves the calculation of a three-dimensional weightedfree energy contribution for a particular layer is calculated
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from this weighted density and finally the totakcessree  whereR and G represent the Bravais and reciprocal lattice
energy is obtained as the sum of the individual contributionsvectors corresponding to the lattice structure of the solid and
from all the layers of the interface. Thus, within this layer- pG:pSe*GZMa with p denoting the average bulk density of
wise MWDA (LMWDA), theexcessree energy is given by  the solid phase. The parameteis determined so as to mini-
mize the total free energy of the solid phase. The solid-liquid
n phase coexistence is determined by equating the chemical
FLMWDA > Niolpp), (15)  potential and pressure of the two phases.
i=1 For the interface region, the density distribution is mod-
eled by an expression that is a modification of Ef) and
has been originally suggested by Curt2] and employed
by others[23]. Considering the direction as perpendicular
to the interfacialk-y plane, the density profile is assumed to

[3dzf fdx dyp(rfdr’ p(r'w(r=r';p) be given by
[7dzf fdx dyp(r) '

whereN; is the number of particles in thigh layer andp;,
the weighted density of thigh layer, is defined as

pi=

(16) p(r)=p.+<ps—p.>fo<z>+§ pefe(z)€®T, (19

wherez; andz; define the range of averagirigoarse grain-

ing) for theith layer in thez direction. Since this scheme is
similar to MWDA, we propose to employ the MWDA ex-
pression for the weight function. 1 12| <z,

where

fe(2)= %(1+CO§LW(Z_ZO)/AZG]), 20<|z|<zs (20)
Il APPLICATION TO SOLID-FLUID INTERFACE 0 | |
z|>zg,
The conventional MWDA to DFT has been quite success- ¢
ful in predicting the bulk solid-fluid transition. In this ap- where z, denotes the position of the solid-fluid interface
proach, the solid phase with a periodically varying inhomo-boundary,Azg=|zg— 25| =(G,/G)"Az, with G, being the
geneous density distribution is viewed as an effectivemagnitude of the smallest nonzero reciprocal lattice vector,
uniform fluid of densityp, which is used in thexcesdree Az is the interface width ana is a parameter. The function
energy expression of the uniform system to obtaingkeess f(z) is defined as‘Gl(z). Clearly, Eq.(19) becomes iden-
free energy of the solid phase. Conventionally, the periodigical to Eq. (18) inside the bulk solid phasdZ<z,) and
inhomogeneous density distributigr{r) of the solid phase yields the liquid densityp, in the bulk liquid region
is represented as a superposition of normalized Gaussiar(lpz|>zo+ Az). For the parametrized density given by Eq.

centered at each lattice site, viz., (19), the planar averaged densfiyz) as defined by Eq13)

is given by
@ 3/2 5
= — —a(r—=R) R .
p(r) (W) e : 0 b@=p+(ps—p)fo(D+ 2 pole(2)€70s o5, 0.

which can also be rewritten in Fourier space as @D

Also using Eqs(19) and (20) into Eq. (16), we obtain the
p(r)=pet E peeC T (18) final expression for the layerwise effective density for the
* &0 interface given by

pi—’ l ‘)I(Zf Zi) (P - I)f fdz fo( )+ . 5 , ff ):|
IIZ s™ P i Z E S,
n Pl(ps P|)f dk W(k)fo(_k)( I(Zf) n( Z; ]

(s p1)? [ Ak W Fo(—KTET—K)+ (ps—p1) | Ak WIo(—K) S, 86, 09, oplE1G,—K)

sin(kz;) —sin(kz
+Psf dkvv(k)( n( f)k n( 21)];0 5GX,O‘SGy'0prG(GZ+k)

G#0 g’ #0

+ 2 2 8,69, ,-c/PcPer f dkw(JG'2+k2>fef<k+eg>fgeiez—k>}, (22
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where BAQ
Y=TaA (31
Zf 1 © © min
nz=J deJ dxf dyp(r), (23
g — - Heren; denotes the number of particles per unit area in the
ith layer. The chemical potential and the pressur® are
z . . . .
froes(k):f fdz f,(z)e'k? (24) calculated for the fluid phase using the expressions
z
' d(pF[plIN)
z .
FEtk) = f 'dz fe()e'. (25 2
z
' d(F[p]/N)
P=p(u—F[p]IN)=p? ———. 33
The system that we consider here is the hard sphere fluid p(u—FlplN)=p ap 33
and the interface chosen is along thé1) plane of fcc struc-
ture of the solid phase. The layerwise MWDA that we adopt IV. RESULTS AND DISCUSSION
essentially employs full MWDA in thex-y plane and an ) o )
effective density is obtained for each layer in theirection. In the present investigation, we have studied the structure

The parameter& andzf denoting the range (Iffor integra_ of solid-fluid interface of the hard Sphere f|UId, with the in-
tion in Eq. (16) are clearly different for different layers and terface chosen to be parallel to t&ll) plane of the fcc
are chosen such that the layerwise MWDA for layers withinlattice. Thez coordinate defined in the perpendicular direc-
the bulk solid phase region yields the same effective densitjion has been normalized in terms of the distance between
as that obtained by full MWDA for the bulk solid. In view of the (111 planes,5(=a/v3), wherea[ = (4/p))*] denotes
the nature of the relation between the distance between tH8€ fcc lattice constant. The density parametrization of Egs.
planes and the lattice constant for the fcc structure, it ig19) and(20) used here is the same as that used by Curtin
found that for LMWDA corresponding to a particular layer [22] as well as Marr and Ga$g3], with the value of the
of interest, thez integration range should cover three layers,parameten chosen to be the same as that used by Marr and
which includes one adjacent layer on each side in addition t&ast[23] and is equal to 0.25. In order to obtain the solid
the concerned layer of interest. and fluid phase densities corresponding to the bulk fluid-
The interfacial energy is obtained by calculating the solid transition, we fir_st employ the present meth_od to the
cessgrand potentialAQ) for various interfacial widths and bulk phases. Clearly in the solid phase, the density param-

finding the minimum with respect tdz. Using the expres- €trization of Egs.(19) and (20) becomes the same as Eq.
sion (18). For a chosen value ¢fs, the exponent is determined

by minimizing the solid phase free energy, where the excess
free energy is evaluated through the present LMWDA. By
AQ[p(r)]= F[P(r)]_ﬂf dr p(r)+PV (260 evaluating the derivatives in Eq2) and(33) numerically,
the chemical potentigks and pressur®, for the solid phase
along with Egs(2) and(3) and LMWDA we obtain is obtained for different values gfs. The bulk densities at
the phase coexistence are predicted by equatingnd P
AQ[p(r)]=Fo™PA[p(r)]+PV with &, and P,, respectively, for the liquid phase. Percus-
Yevick expressions for the equation of state and the correla-
+ | dr o8~ HInMo(r)A3T=11— tion functions have been employed throughout.
fd p(NLAHINLp(NAT] =1} = 1], The bulk solid and fluid phase densitie6dimensionless,
(270 i-e., in units of 163, whereo is the hard sphere diameter
obtained in this manner agg=1.033 andp,=0.911, which
whereP, V, andu represent pressure, volume, and chemicakre close to those from other WDA and PWDA based stud-
potential, respectively. Defining ies. The calculated values & and u usingp; in Egs.(32)
and (33) are 10.8546 and 15.4538, respectively. The layer-

A wise weighted density; for each layer has been calculated
(Tig)i = Li dz g f f dx dyp(r)in p(r), (28) for different values of the interfacial widthz and the cor-
respondingy; values are also calculategl. clearly runs from
a=Br—(In A3-1) (29 the MWDA p(=0.53477) in the bulk solid tp,(=0.911) in
the fluid region. The quantityBAQ/A) is then calculated
and using Eq(15), Eq. (27) can be written as using Eq.(30) for different values ofAz and the results are

plotted in Fig. 1. It is clear from the figure that the width of
B G o the interface as obtained from the minimum value of
T:izl niﬁ‘/’o(piH; '“ni“Li:El (fig)i+ BPAZ (BAQ/A) corresponds to 8—9 layers and the dimensionless
(30) surface free energy we obtain 45=0.33. Clearly the value
of interfacial width obtained from the present approach is
the minimum of which with respect tAz denotes the inter- slightly larger than the same obtained from the earlier WDA
facial tension,y, viz., and PWDA approaches using the same form of parametrized

n
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FIG. 1. Plot of calculated surface free energy vs number of 14 '
interfacial layers for fcc liquid111) interface of hard sphere fluid.

density. The value of the surface free enengis, however, . . . .

smaller than those obtained by WDA and PWDA procedures F!G- 2. Plot of planar averaged interfacial density profile)

(0.63 and 0.60, respectivlylt may be noted that in this for the (11_1) fcc I_|qU|d_ interface of hard sphere fluid for several
work we have proposed further simplification of the PWDA Values of interfacial width.

approach of Marr and Gag23] and to have a proper com-

parison with their results, we have employed the same derproach are quite close to the valukg~8 layers(7o) typi-

sity parametrization. While alternative procedures involvingcally andy=0.26 as obtained through the unconstraifreé

free minimization using unconstrained density variation nu-minimization. Since there are few complete simulation stud-
merically as has been proposed recerft4] can also be ies on the hard sphere interface, we are not able to compare
attempted within the present LMWDA prescription, such aour results with simulation. However, simulation results on
procedure will be highly computationally demanding. Wethe system with the ~? potential are available and compari-
have therefore restricted ourselves to the more simplifiedon with this result can be made as it resembles the hard
treatment using an analytical trial form for the density profilesphere potential because of the steeply repulsive nature of
of the interface as has been used eafl2®,23. It is, how-  ther 12 potential. The 12 (111) interface studied by Tollan
ever, interesting to note that the predicted interfacial width4] consists of six to seven layers and hence our result
and surface free energy obtained through the present apatches quite well with this.

TABLE |. Layerwise weighted density, particle number, and contribution to excess free energy.

Layer number

Az quantity 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th  11th

7 pi 05755 0.7458 0.8098 0.8456 0.9241 0.9280 0.9184
n; 0.9381 0.9269 0.9067 0.8814 0.8562 0.8360 0.8236
Yon;  1.8119 2.8112 3.2396 3.4510 4.1028 4.0464 3.8888
8 pi 05674 0.7090 0.7684 0.8165 0.9193 0.9297 0.9191 0.9176
n; 0.9377 0.9292 0.9133 0.8926 0.8702 0.8494 0.8334 0.8241
Pon; 1.7708 2.5626 2.9355 3.2445 4.1180 4.1302 3.9425 3.8828
9 i 05614 0.6796 0.7330 0.7874 0.9085 0.9253 0.9173 0.9213 0.9166
n; 0.9375 0.9307 0.9180 0.9008 0.8814 0.8618 0.8446 0.8317 0.8245
Yon;  1.7407 2.2777 2.6939 3.0399 4.0566 4.1425 3.9766 3.9567 3.8748
10 p; 05568 0.6563 0.7036 0.7598 0.8925 0.9150 0.9118 0.9255 0.9209 0.9154
n; 0.9373 0.9318 0.9214 0.9071 0.8902 0.8725 0.8556 0.8412 0.8306 0.8247
Yon;  1.7181 2.2392 2.5061 2.8517 3.9309 4.0831 3.9715 4.0456 3.9469 3.8637
11 pi  0.5532 0.6379 0.6795 0.7346 0.8725 0.9000 0.9030 0.9277 0.9252 0.9178 0.9148
n; 0.9372 0.9327 0.9240 0.9118 0.8972 0.8813 0.8654 0.8508 0.8387 0.8296 0.8249
Pon;  1.7009 2.1340 2.3600 2.6868 3.7638 3.9678 3.9262 4.1149 4.0307 3.9115 3.8593
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To obtain insight into the nature of the interface, we haveacross the layers for any particulAz with minor oscilla-
plotted in Fig. 2 the planar averaged dengify) as a func- tions in the values in different intermediate layers. It is also
tion of Az and also presented the calculated valugs oh;, interesting to study the contributions of different layers to-
and layerwise contribution to trexcesdree energyn; #o(p;)  wards theexcesdree energy o(p;)n;] as shown in Table I,
for several values oAz in Table I. From Fig. 2 it is clear although no definite conclusion can be reached from its
that the structure of the first layer in each case resembles thagriation.
of the bulk solid phase and becomes more solidlike with an
increase inAz. This is also reflected in the trend of the
values of the weighted densipy for the first layer, which are
close to the effective density of the bulk MWDA result
(0.53477F and approaches this result Az increases. The In this work, we have presented a density-functional ap-
value of n; for the first layer varies very slowly and ap- proach to study the fluid-solid interface. The approach pro-
proaches the bulk solid phase valpgé=0.9365 with an vides a simplification of the PWDA approach proposed by
increase iNAz. Marr and Gast[23] recently since the number of the

From the plot in Fig. 2 it is clear that the density oscilla- weighted density values to be evaluated has been reduced
tion is damped as one moves along the interface towards thérastically as compared to the PWDA approach. Also as we
liquid phase. The values of also decrease monotonically as are using the MWDA weight function, a solution of any
one passes through the layers andor the last layer is close differential equation is not involved for the calculation of the
to the bulk liquid resultp,6=0.8259 and approaches this weight function. The results for the hard sphere fluid are
value with increase ihz. The values op; for the last layer, quite encouraging and work on application to other systems
which is liquidlike, are close to the bulk liquid density  [25,2€ is in progress. Recent studies on the DFT of the
=0.911. In general, the values pf vary between the solid crystal-melt interface in the context of nucleation and crystal

V. CONCLUDING REMARKS

phase MWDA effective density and the bulk liquid density

growth [27] are also of interest.
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