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Modified weighted density-functional approach to the crystal-melt interface

Niharendu Choudhury and Swapan K. Ghosh
Heavy Water Division, Bhabha Atomic Research Centre, Bombay 400085, India

~Received 31 July 1997!

We present a modified weighted density-functional approach to study the structure and energetics of the
crystal-melt interface of hard sphere fluid. Compared to the earlier theories of the solid-liquid interface,
computational requirements have been considerably reduced through the newly defined layer-by-layer
weighted density. Interfacial width obtained from the present approach is slightly larger than that obtained
from earlier weighted density based theories using density parametrization, but is close to the result from
similar theories with free minimization as well as the computer simulation result of soft-sphere (r 212) poten-
tial, which resembles hard sphere potential. Surface free energy predicted by the present theory is somewhat
lower than that obtained from earlier weighted density based approaches with density parametrization but is
again close to that of free minimization with respect to the density distribution at the interface.
@S1063-651X~98!05302-1#

PACS number~s!: 68.45.Ws, 82.65.Dp, 64.70.Dv, 61.20.Gy
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I. INTRODUCTION

The study of the interface between a crystal and its me
of immense importance for the understanding of crys
growth, homogeneous nucleation, and many other impor
phenomena@1#. Experimental studies of the solid-fluid inte
face are, however, rather difficult since the interface is c
fined between two condensed bulk phases. As a result, c
puter simulation has played the role of a very important a
useful technique for the study of solid-fluid interfaces ov
the years and many simulation studies on the interface h
been reported in the literature@2–5#. The simulation studies
of ~i! Lennard-Jones fcc~111!, ~100!, and~110! interfaces by
Broughton and Gilmer@3#, ~ii ! the soft-sphere (r 212) fcc
~100! interface by Cape and Woodcock@4# and~iii ! the r 212

fcc ~111! interface by Tallon@5# are some of the works tha
are of particular relevance in the present context. Since
early simulation@6,7# work for hard spheres in 1968, ther
has been an upsurge of interest in the theoretical approa
for the study of solid-fluid transition process. An accura
and easy to handle microscopic theory for the freezing
well as crystal-melt interface has, however, still not be
fully developed. Recently, density-functional theory@8#
~DFT!, a computationally simple and versatile approach
plicable to many-electron quantum systems@9# as well as
many-particle classical systems@10,11# has provided a rathe
easy means to describe the fluid-solid transition@11# not only
for simple fluids but also for complex fluids@12# as well as
quantum systems@13#. A wide variety of other problems
involving the equilibrium structure and thermodynamics
nonuniform as well as uniform fluids@10,14,15# can be in-
vestigated by DFT with great ease and a sophisticated l
of accuracy.

In DFT, the grand potential of a many-particle system
treated as a functional of its single-particle density@16# and
this functional assumes a minimum value for the true d
sity. The exact functional form of the grand potential
however, not known in general for an inhomogeneous d
sity distribution, and therefore it is essential to find a suita
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approximation@17# for this density functional. The unknown
part of the functional is, however, universal for a system
prescribed interparticle interaction and is independent of
external potential responsible for the inhomogeneity of
density distribution. For some systems, the exact functio
form of this quantity for uniform density is known and th
knowledge can be used to obtain approximations for
functionals for the corresponding nonuniform density dis
bution. The simplest among these approximate procedure
the perturbative approach@11,17,18#, which involves a func-
tional Taylor series expansion of theexcessfree energy
around the homogeneous bulk density in powers of the d
sity deviation. This expansion, however, involves all t
higher-order correlation functions of the fluid and since t
correlation functions beyond the two-particle direct corre
tion function~DCF! are not known in general, a truncation
second order is often necessary to implement this proce
in practical problems. To bypass the problem of truncat
associated with the perturbative approach, nonperturba
approaches@19–21# that do not involve truncation but incor
porate the two-particle DCF exactly and all the higher ord
correlation functions in an approximate manner have b
developed. These nonperturbative procedures have b
widely used for fluids involving short range~such as hard
sphere! interactions@19–21# as well as ionic systems@14,15#
with long range Coulomb interaction. In this approach, t
free energy functional of the actual inhomogeneous syste
obtained by evaluating the corresponding homogeneous
expression using an effective density. Curtin and Ashcr
@20# define the effective density as the weighted average
the actual density distribution of the inhomogeneous sys
and this is known as weighted density approximati
~WDA!, which, however, requires the determination of
spatially varying weighted densityr̄(r ) and hence is a com
putationally demanding approach. For this reason, its ap
cation to more complex systems has been somewhat
stricted although it is highly successful in predicting t
solid-fluid coexistence for hard sphere systems. To overco
this difficulty, a much simplified approach, known as t
1939 © 1998 The American Physical Society
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1940 57NIHARENDU CHOUDHURY AND SWAPAN K. GHOSH
modified weighted density approach~MWDA ! has been pro-
posed by Denton and Ashcroft@21#. This approach involves
the determination of a spatially invariant weighted dens
and therefore significantly reduces the computational
quirements in contrast to WDA. For the hard sphere b
fluid-solid transition, predictions of both WDA and MWDA
agree quite well with the simulation results.

Though there are several procedures to study the b
solid-fluid transition, very few approaches to study the so
melt interface have been reported so far. As in the cas
bulk solid-fluid transition, both perturbative and nonpertu
bative approaches have been used to investigate the s
melt interface. Earlier works on the solid-melt interface a
largely based on the perturbative approach of Haymet
Oxtoby ~HO! @18#, which involves a functional Taylor serie
expansion truncated in second order in the density devia
and an additional square-gradient approximation for
variation of r(r ) through the interface. In this approach,
very broad interface has been predicted by Haymet and
toby @18# that may be a consequence of using the trunca
expression and the square-gradient approximation. These
ficulties of the perturbative approach have inspired the
velopment of alternative nonperturbative approximations
the excessfree energy functionalFex@r(r )# and a suitable
parametrization of the density distribution bypassing
square-gradient approximation. Curtin@22# was the first to
extend their WDA approach for bulk solid-fluid transitions
the crystal-melt interface by a suitable flexible parametri
tion of the density, predicting the structure and energetic
fairly close agreement with the simulation results. Thou
this approach overcomes all the drawbacks associated
the HO approach, its computational requirements are v
demanding as it involves the calculation of the weighted d
sity r̄(r ) as a function ofr . Encouraged by the success
MWDA in reducing the computational effort in the case
bulk fluid-solid transition, Marr and Gast@23# have intro-
duced recently a planar weighted density approximat
~PWDA! that involves the calculation of a one-dimension
weighted densityr̄(z) in contrast to the calculation of
three-dimensional weighted densityr̄(r ) in Curtin’s ap-
proach. This approach yields results quite similar to tha
Curtin’s WDA approach@22#. In both of these nonperturba
tive approaches, the calculation of the weight function
volves numerical solution of a nonlinear differential equ
tion. To overcome this difficulty and to further simplify th
computational requirements we propose in this paper a
erwise MWDA approach, where the weighted density is c
stant within a layer, but changes from layer to layer i.
every layer is associated with a constant weighted density
this approach, theexcessfree energy of each of the layers
obtained by evaluating the homogeneous free energy exp
sion with the weighted density of that layer and the to
excessfree energy of the interface is obtained as the sum
the free energies of all the layers. Thus, this approach
volves the evaluation of only a few weighted density qua
tities in contrast to the PWDA, which requires the weight
density values to be evaluated at each mesh point in thz
direction. We have applied the proposed layerwise MWD
based technique to calculate the density profile and the
face free energy of the crystal-melt interface of the h
sphere fluid. This paper is organized as follows. In Sec.
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we review different nonperturbative weighted density bas
approaches along with our proposed approach. In Sec.
the density parametrization and the application of our
proach to the hard sphere system are presented. Finally
sults are discussed in Sec. IV along with a short conclud
remark in Sec. V.

II. DENSITY-FUNCTIONAL THEORY

In DFT, the grand potentialV@r# of a many-particle inho-
mogeneous system characterized by an external pote
u(r ) is treated as a unique functional of the density distrib
tion r(r ) and is expressed as

V@r#5F@r#1E dr @u~r !2m#r~r !, ~1!

where m is the chemical potential andF@r#, the intrinsic
Helmholtz free energy functional, is a universal functional
density consisting of anideal-gascontribution (F id) and an
excessfree energy contribution (Fex), viz.,

F@r#5F id@r#1Fex@r#. ~2!

The ideal-gas free energy functional (F id@r#), which repre-
sents the free energy of the nonuniform system in the
sence of internal interactions, can be explicitly expressed
the exact functional form

F id@r#5b21E dr r~r !$ ln@r~r !L3#21%, ~3!

whereb@5(kBT)21# ~kB is the Boltzmann constant! repre-
sents the inverse temperature, andL denotes the thermal d
Broglie wavelength. On the other hand, the excess free
ergy contribution (Fex) arises due to interparticle interaction
and the exact form of this functional is not known in gene
for an inhomogeneous density distribution. Various appro
mate schemes~perturbative as well as nonperturbative! have
therefore been proposed for the calculation ofFex@r# and
most of them make use of the knowledge of this functio
or its derivative for specific systems of uniform density. T
relevant nonperturbative approaches based on an effe
weighted density prescription are discussed in the next s
section.

A. Weighted density approximation

Curtin and Ashcroft@20# have approximated the averag
~per particle! excess free energy of the inhomogeneous s
tem locally by the excess free energy per particle of
corresponding homogeneous fluid (c0) evaluated at some
effective liquid densityr̄(r ) and the total excess free energ
is then expressed as a sum of the local contributions, viz

Fex
WDA@r#5E dr r~r !c0„r̄~r !…, ~4!

where the effective weighted densityr̄(r ) is a suitably cho-
sen average of the actual inhomogeneous density distr
tion, defined as
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57 1941MODIFIED WEIGHTED DENSITY-FUNCTIONAL . . .
r̄~r !5E dr 8 r~r 8!w„ur2r 8u; r̄~r !…. ~5!

The weight functionw(ur2r 8u) is normalized to unity to
ensure the correct result at the uniform density limit and
uniquely determined by demanding that the approxima
Fex@r# yields the correct two-particle direct correlation fun
tion in the homogeneous limit~bulk densityr0!, viz.,

2b21c0
~2!~ ur2r 8u;r0!5 lim

r→r0

d2Fex@r#

dr~r !dr~r 8!
. ~6!

Using these two conditions,w is solved for readily in Fourier
space and one obtains

2b21c0
~2!~k;r0!52c08w~k;r0!

1r0

]

]r0
@c08w

2~k;r0!#, ~7!

where the primes denote derivatives with respect to the d
sity. Clearly, evaluation ofw(k;r0) in this approach in-
volves the solution of a nonlinear second order differen
equation for each value ofk.

B. Modified weighted density approximation

The MWDA of Denton and Ashcroft@21# has simplified
and reduced the computational procedure drastically by
proximating the globalexcessfree energy per particle of th
inhomogeneous system by the same for the homogen
fluid evaluated at a spatially invariant effective density a
expressingFex as

Fex
MWDA@r#5Nc0~ r̄ !, ~8!

whereN is the number of particles and the weighted dens
r̄ is defined as

r̄5
1

N E dr r~r !E dr 8 r~r 8!w~ ur2r 8u; r̄ !. ~9!

Demanding normalization and the condition defined by E
~6!, w in Fourier space is obtained as

w~k;r0!52
1

2c08
@b21c0

~2!~k;r0!1dk,0r0c09#. ~10!

The evaluation ofw(k;r0) is thus much easier here as com
pared to the WDA procedure, since the expression is sim
and explicit and no differential equation is to be solved.

C. Planar weighted density approximation

Curtin @22# has successfully applied WDA to the interf
cial problem but with a significant computational effort as
involves the calculation of a three-dimensional weigh
s
d
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y
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density distribution r̄(r ). On the other hand, althoug
MWDA requires the evaluation of only one effective dens
quantity, and has been quite successful for the bulk solid,
of a single density parameter is unlikely to reproduce
interfacial properties properly. In an attempt to reduce
computational requirement associated with WDA, Marr a
Gast@23# proposed a planar weighted density approximati
where they retained WDA only in the perpendicularz direc-
tion and employed MWDA in thex-y plane parallel to the
interface. Thus, they defined a spatially varying on
dimensional weighted density,r̄(z) as

r̄~z!5
**dx dyr~r !*dr 8 r~r 8!w„ur2r 8u; r̄~z!…

**dx dyr~r !
~11!

and proposed to obtain theexcessfree energy as

Fex
PWDA@r#5E dr r̂~z!c0„r̄~z!… ~12!

where the planar-averaged densityr̂(z) is defined as

r̂~z!5
1

A E E dx dyr~r ! ~13!

with A denoting the interfacial area. Here alsow is deter-
mined from the condition of normalization and the requir
ment on the limiting behavior@Eq. ~6!#. In Fourier spacew is
obtained as the solution of the differential equation

2b21c0
~2!~k;r0!52c08w~k;r0!

1dki,0
r0

]

]r0
@c08w

2~k;r0!#. ~14!

In contrast to WDA, PWDA has reduced the computation
requirements significantly as this procedure involves cal
lation of a one-dimensional weighted density instead o
three-dimensional one.

D. Layerwise modified weighted density approximation

Motivated by the success of the PWDA, we propose
method leading to its further simplification. In this approac
we follow PWDA and employ MWDA in thex-y plane but
instead of using WDA in thez direction, we employ suitable
coarse graining in thez direction. Thus we divide the region
of inhomogeneous interface into different atomic layers a
instead of only a single weighted density parameter as in
full MWDA, we have one density parameter for each lay
and hence a total ofn density parameters wheren is the
number of atomic layers in the interface region. This is co
siderable simplification as compared to PWDA, which i
volves r̄(z) and hence density parameters equal to the nu
ber of mesh points in thez direction. After evaluating a
spatially invariant weighted density for each layer, theexcess
free energy contribution for a particular layer is calculat
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1942 57NIHARENDU CHOUDHURY AND SWAPAN K. GHOSH
from this weighted density and finally the totalexcessfree
energy is obtained as the sum of the individual contributio
from all the layers of the interface. Thus, within this laye
wise MWDA ~LMWDA !, theexcessfree energy is given by

Fex
LMWDA 5(

i 51

n

Nic0~ r̄ i !, ~15!

whereNi is the number of particles in thei th layer andr̄ i ,
the weighted density of thei th layer, is defined as

r̄ i5
*zi

zfdz**dx dyr~r !*dr 8 r~r 8!w~ ur2r 8u; r̄ i !

*zi

zfdz**dx dyr~r !
,

~16!

wherezi andzf define the range of averaging~coarse grain-
ing! for the i th layer in thez direction. Since this scheme i
similar to MWDA, we propose to employ the MWDA ex
pression for the weight function.

III APPLICATION TO SOLID-FLUID INTERFACE

The conventional MWDA to DFT has been quite succe
ful in predicting the bulk solid-fluid transition. In this ap
proach, the solid phase with a periodically varying inhom
geneous density distribution is viewed as an effect
uniform fluid of densityr̄, which is used in theexcessfree
energy expression of the uniform system to obtain theexcess
free energy of the solid phase. Conventionally, the perio
inhomogeneous density distributionr(r ) of the solid phase
is represented as a superposition of normalized Gauss
centered at each lattice site, viz.,

r~r !5S a

p D 3/2

(
R

e2a~r2R!2
, ~17!

which can also be rewritten in Fourier space as

r~r !5rs1 (
GÞ0

rGeiG•r, ~18!
s

-

-
e

ic

ns

whereR and G represent the Bravais and reciprocal latti
vectors corresponding to the lattice structure of the solid
rG5rse

2G2/4a with rs denoting the average bulk density o
the solid phase. The parametera is determined so as to mini
mize the total free energy of the solid phase. The solid-liq
phase coexistence is determined by equating the chem
potential and pressure of the two phases.

For the interface region, the density distribution is mo
eled by an expression that is a modification of Eq.~18! and
has been originally suggested by Curtin@22# and employed
by others@23#. Considering thez direction as perpendicula
to the interfacialx-y plane, the density profile is assumed
be given by

r~r !5r l1~rs2r l ! f 0~z!1(
G

rGf G~z!eiG•r, ~19!

where

f G~z!5H 1 uzu,z0

1

2
~11cos@p~z2z0!/DzG# !, z0,uzu,zG

0 uzu.zG ,

~20!

where z0 denotes the position of the solid-fluid interfac
boundary,DzG5uzG2z0u5(G1 /G)nDz, with G1 being the
magnitude of the smallest nonzero reciprocal lattice vec
Dz is the interface width andn is a parameter. The function
f 0(z) is defined asf G1

(z). Clearly, Eq.~19! becomes iden-

tical to Eq. ~18! inside the bulk solid phase (uzu,z0) and
yields the liquid densityr l in the bulk liquid region
(uzu.z01Dz). For the parametrized density given by E
~19!, the planar averaged densityr̂(z) as defined by Eq.~13!
is given by

r̂~z!5r l1~rs2r l ! f 0~z!1 (
GÞ0

rGf G~z!eiGzzdGx,0dGy,0 .

~21!

Also using Eqs.~19! and ~20! into Eq. ~16!, we obtain the
final expression for the layerwise effective density for t
interface given by
r̄ i5
r l

nz
Fr l~zf2zi !1~rs2r l !E

zi

zf
dz f0~z!1 (

GÞ0
dGx,0dGy,0rGf G

res~Gz!G
1

1

2pnz
Fr l~rs2r l !E dk w~k! f 0~2k!H sin~kzf !2sin~kzi !

k J
1~rs2r l !

2E dk w~k! f 0~2k! f 0
res~2k!1~rs2r l !E dk w~k! f 0~2k! (

GÞ0
dGx,0dGy,0rGf G

res~Gz2k!

1rsE dk w~k!H sin~kzf !2sin~kzi !

k J (
GÞ0

dGx,0dGy,0rGf G~Gz1k!

1 (
GÞ0

(
G8Þ0

dGx ,2G
x8
dGy ,2G

y8
rGrG8E dk w~AGi8

21k2! f G8~k1Gz8! f G
res~Gz2k!G , ~22!
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57 1943MODIFIED WEIGHTED DENSITY-FUNCTIONAL . . .
where

nz5E
zi

zf
dz

1

A E
2`

`

dxE
2`

`

dyr~r !, ~23!

f 0
res~k!5E

zi

zf
dz f0~z!eikz ~24!

and

f G
res~k!5E

zi

zf
dz fG~z!eikz. ~25!

The system that we consider here is the hard sphere
and the interface chosen is along the~111! plane of fcc struc-
ture of the solid phase. The layerwise MWDA that we ado
essentially employs full MWDA in thex-y plane and an
effective density is obtained for each layer in thez direction.
The parameterszi andzf denoting the range ofz for integra-
tion in Eq. ~16! are clearly different for different layers an
are chosen such that the layerwise MWDA for layers with
the bulk solid phase region yields the same effective den
as that obtained by full MWDA for the bulk solid. In view o
the nature of the relation between the distance between
planes and the lattice constant for the fcc structure, i
found that for LMWDA corresponding to a particular lay
of interest, thez integration range should cover three laye
which includes one adjacent layer on each side in additio
the concerned layer of interest.

The interfacial energy is obtained by calculating theex-
cessgrand potentialDV for various interfacial widths and
finding the minimum with respect toDz. Using the expres-
sion

DV@r~r !#5F@r~r !#2mE dr r~r !1PV ~26!

along with Eqs.~2! and ~3! and LMWDA we obtain

DV@r~r !#5Fex
LMWDA @r~r !#1PV

1E dr r~r !@b21$ ln@r~r !L3#21%2m#,

~27!

whereP, V, andm represent pressure, volume, and chemi
potential, respectively. Defining

~ f̂ id! i5E
zi

zf
dz

1

A E E dx dyr~r !ln r~r !, ~28!

m̂5bm2~ ln L321! ~29!

and using Eq.~15!, Eq. ~27! can be written as

bDV

A
5(

i 51

n

nibc0~ r̄ i !1(
i 51

n

m̂ni1(
i 51

n

~ f̂ id! i1bPDz

~30!

the minimum of which with respect toDz denotes the inter-
facial tension,g, viz.,
id

t

ty

he
is

,
to

l

g5
bDV

A U
min

. ~31!

Hereni denotes the number of particles per unit area in
i th layer. The chemical potentialm and the pressureP are
calculated for the fluid phase using the expressions

m5
]~rF@r#/N!

]r
~32!

and

P5r~m2F@r#/N!5r2
]~F@r#/N!

]r
. ~33!

IV. RESULTS AND DISCUSSION

In the present investigation, we have studied the struc
of solid-fluid interface of the hard sphere fluid, with the i
terface chosen to be parallel to the~111! plane of the fcc
lattice. Thez coordinate defined in the perpendicular dire
tion has been normalized in terms of the distance betw
the ~111! planes,d(5a/)), wherea@5(4/rs)

1/3# denotes
the fcc lattice constant. The density parametrization of E
~19! and ~20! used here is the same as that used by Cu
@22# as well as Marr and Gast@23#, with the value of the
parametern chosen to be the same as that used by Marr
Gast @23# and is equal to 0.25. In order to obtain the so
and fluid phase densities corresponding to the bulk flu
solid transition, we first employ the present method to
bulk phases. Clearly in the solid phase, the density par
etrization of Eqs.~19! and ~20! becomes the same as E
~18!. For a chosen value ofrs , the exponenta is determined
by minimizing the solid phase free energy, where the exc
free energy is evaluated through the present LMWDA.
evaluating the derivatives in Eqs.~32! and~33! numerically,
the chemical potentialms and pressurePs for the solid phase
is obtained for different values ofrs . The bulk densities at
the phase coexistence are predicted by equatingms and Ps
with m l and Pl , respectively, for the liquid phase. Percu
Yevick expressions for the equation of state and the corr
tion functions have been employed throughout.

The bulk solid and fluid phase densities~dimensionless,
i.e., in units of 1/s3, wheres is the hard sphere diamete!
obtained in this manner arers51.033 andr l50.911, which
are close to those from other WDA and PWDA based st
ies. The calculated values ofP andm usingr l in Eqs. ~32!
and ~33! are 10.8546 and 15.4538, respectively. The lay
wise weighted densityr̄ i for each layer has been calculate
for different values of the interfacial widthDz and the cor-
respondingni values are also calculated.r̄ i clearly runs from
the MWDA r̄(50.53477) in the bulk solid tor l(50.911) in
the fluid region. The quantity (bDV/A) is then calculated
using Eq.~30! for different values ofDz and the results are
plotted in Fig. 1. It is clear from the figure that the width
the interface as obtained from the minimum value
(bDV/A) corresponds to 8–9 layers and the dimensionl
surface free energy we obtain isg50.33. Clearly the value
of interfacial width obtained from the present approach
slightly larger than the same obtained from the earlier WD
and PWDA approaches using the same form of parametr
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1944 57NIHARENDU CHOUDHURY AND SWAPAN K. GHOSH
density. The value of the surface free energyg is, however,
smaller than those obtained by WDA and PWDA procedu
~0.63 and 0.60, respectively!. It may be noted that in this
work we have proposed further simplification of the PWD
approach of Marr and Gast@23# and to have a proper com
parison with their results, we have employed the same d
sity parametrization. While alternative procedures involvi
free minimization using unconstrained density variation n
merically as has been proposed recently@24# can also be
attempted within the present LMWDA prescription, such
procedure will be highly computationally demanding. W
have therefore restricted ourselves to the more simpli
treatment using an analytical trial form for the density profi
of the interface as has been used earlier@22,23#. It is, how-
ever, interesting to note that the predicted interfacial wi
and surface free energy obtained through the present

FIG. 1. Plot of calculated surface free energy vs number
interfacial layers for fcc liquid~111! interface of hard sphere fluid
s

n-

-

d

h
p-

proach are quite close to the valuesDz'8 layers~7s! typi-
cally andg50.26 as obtained through the unconstrainedfree
minimization. Since there are few complete simulation stu
ies on the hard sphere interface, we are not able to com
our results with simulation. However, simulation results
the system with ther 212 potential are available and compar
son with this result can be made as it resembles the h
sphere potential because of the steeply repulsive natur
ther 212 potential. Ther 212 ~111! interface studied by Tollan
@4# consists of six to seven layers and hence our re
matches quite well with this.

f

FIG. 2. Plot of planar averaged interfacial density profiler̂(z)
for the ~111! fcc liquid interface of hard sphere fluid for sever
values of interfacial width.
y.

.9148

.8249

.8593
TABLE I. Layerwise weighted density, particle number, and contribution to excess free energ

Dz quantity

Layer number

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th

7 r̄ i 0.5755 0.7458 0.8098 0.8456 0.9241 0.9280 0.9184
ni 0.9381 0.9269 0.9067 0.8814 0.8562 0.8360 0.8236

c0ni 1.8119 2.8112 3.2396 3.4510 4.1028 4.0464 3.8888
8 r̄ i 0.5674 0.7090 0.7684 0.8165 0.9193 0.9297 0.9191 0.9176

ni 0.9377 0.9292 0.9133 0.8926 0.8702 0.8494 0.8334 0.8241
c0ni 1.7708 2.5626 2.9355 3.2445 4.1180 4.1302 3.9425 3.8828

9 r̄ i 0.5614 0.6796 0.7330 0.7874 0.9085 0.9253 0.9173 0.9213 0.9166
ni 0.9375 0.9307 0.9180 0.9008 0.8814 0.8618 0.8446 0.8317 0.8245

c0ni 1.7407 2.2777 2.6939 3.0399 4.0566 4.1425 3.9766 3.9567 3.8748
10 r̄ i 0.5568 0.6563 0.7036 0.7598 0.8925 0.9150 0.9118 0.9255 0.9209 0.9154

ni 0.9373 0.9318 0.9214 0.9071 0.8902 0.8725 0.8556 0.8412 0.8306 0.8247
c0ni 1.7181 2.2392 2.5061 2.8517 3.9309 4.0831 3.9715 4.0456 3.9469 3.8637

11 r̄ i 0.5532 0.6379 0.6795 0.7346 0.8725 0.9000 0.9030 0.9277 0.9252 0.9178 0
ni 0.9372 0.9327 0.9240 0.9118 0.8972 0.8813 0.8654 0.8508 0.8387 0.8296 0

c0ni 1.7009 2.1340 2.3600 2.6868 3.7638 3.9678 3.9262 4.1149 4.0307 3.9115 3
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57 1945MODIFIED WEIGHTED DENSITY-FUNCTIONAL . . .
To obtain insight into the nature of the interface, we ha
plotted in Fig. 2 the planar averaged densityr̂(z) as a func-
tion of Dz and also presented the calculated values ofr̄ i , ni ,
and layerwise contribution to theexcessfree energynic0( r̄ i)
for several values ofDz in Table I. From Fig. 2 it is clear
that the structure of the first layer in each case resembles
of the bulk solid phase and becomes more solidlike with
increase inDz. This is also reflected in the trend of th
values of the weighted densityr̄ i for the first layer, which are
close to the effective density of the bulk MWDA resu
~0.53477! and approaches this result asDz increases. The
value of ni for the first layer varies very slowly and ap
proaches the bulk solid phase valuersd50.9365 with an
increase inDz.

From the plot in Fig. 2 it is clear that the density oscill
tion is damped as one moves along the interface towards
liquid phase. The values ofni also decrease monotonically a
one passes through the layers andni for the last layer is close
to the bulk liquid resultr ld50.8259 and approaches th
value with increase inDz. The values ofr̄ i for the last layer,
which is liquidlike, are close to the bulk liquid densityr l
50.911. In general, the values ofr̄ i vary between the solid
phase MWDA effective density and the bulk liquid dens
s

s

,

e

at
n

he

across the layers for any particularDz with minor oscilla-
tions in the values in different intermediate layers. It is a
interesting to study the contributions of different layers
wards theexcessfree energy@c0( r̄ i)ni # as shown in Table I,
although no definite conclusion can be reached from
variation.

V. CONCLUDING REMARKS

In this work, we have presented a density-functional a
proach to study the fluid-solid interface. The approach p
vides a simplification of the PWDA approach proposed
Marr and Gast @23# recently since the number of th
weighted density values to be evaluated has been red
drastically as compared to the PWDA approach. Also as
are using the MWDA weight function, a solution of an
differential equation is not involved for the calculation of th
weight function. The results for the hard sphere fluid a
quite encouraging and work on application to other syste
@25,26# is in progress. Recent studies on the DFT of t
crystal-melt interface in the context of nucleation and crys
growth @27# are also of interest.
y
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